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Allocation (LDA), which analyze sermons 
by identifying statistical patterns in word 
co-occurrence. While these methods are 
effective for detecting broad trends, they 
are inherently limited in their ability to 
capture deeper semantic meaning or the 
nuanced ways in which political discourse 
is embedded within religious rhetoric. By 
treating texts as mere collections of words 
without considering their contextual 
relationships, LDA struggles to grasp the 
complexities of meaning, tone, and implicit 
messaging that characterize sermons. In 
contrast, our study employs large language 
models (LLMs), specifically ChatGPT-4o, 
which offer a more sophisticated means 
of textual analysis. LLMs understand 
text contextually, allowing for a richer 
interpretation of themes, sentiment, and 

rhetorical strategies. This enables us to 
move beyond simple keyword frequency 
and uncover more complex patterns of 
political discourse within sermons.
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ChatGPT model demonstrated an accuracy 
rate of approximately 92.5% in correctly 
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﻿9 The analysis achieved a precision rate of 90% 
on a sample of 10 sermons. Additionally, 
it attained a recall rate of 100% based on 
another sample of 10 sermons.

﻿10 The analysis conducted by human readers 
of a sample of sermons confirmed that it is 
inherently challenging to precisely quantify 
the proportion of political content within a 
sermon. However, their evaluation indicated 
that sermons classified as political contained 
a substantial volume of political discourse 
across all three denominations. This finding 
aligns with the results generated by ChatGPT, 
further reinforcing the conclusion that 
political themes constitute a significant 
component of sermons identified as 
politically oriented. The analysis of both the 
volume of political content and the structure 
of sermons was conducted across all 4302 
sermons, specifically focusing on those 
categorized as political, regardless of the 
specific time period. In subsequent analyses, 
only sermons from the three main periods 
outlined above will be considered.
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﻿12 Based on a sample of 20 sermons, an 
accuracy rate of 92.5% was achieved.

﻿13 The analysis achieved a precision rate of 
93.33% in identifying whether a sermon 
included criticism, based on a sample 
of 15 sermons. This means that out of 15 
sermons classified as containing criticism, 
14 were correctly identified, demonstrating 
a high level of accuracy in detecting critical 
discourse within the dataset. Additionally, 
to evaluate recall, we selected a separate 
sample of 15 sermons where we already 
knew which ones contained explicit 
criticism. We tested whether ChatGPT 
would miss any of these, and it achieved 
a recall rate of 100%, correctly identifying 
all sermons with explicit criticism in this 
sample
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critical content. The primary objective was 
to evaluate the extent to which ChatGPT 
accurately and comprehensively identified 
and analyzed nuanced criticism across 
various topics. For general criticism, recall 
was assessed using the 15-sermon sample, 
which focused on themes such as settler 
violence, Benjamin Netanyahu, and related 
issues. The 20-sermon sample, in contrast, 
was used to evaluate recall concerning 
criticism directed at the government, 
judicial reform, and the Haredi community.

﻿15 The analysis achieved a precision rate of 
100% and Recall of 100%.
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﻿17 The analysis achieved a precision rate of 
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﻿18 The analysis achieved a precision rate of 
86%.

﻿19 The analysis achieved a precision rate of 
100% and Recall 100%.

﻿20 The analysis achieved a precision rate of 
100%. And Recall 100%.

﻿21 The analysis achieved a precision rate of 
100%  and Recall 100%.

﻿22  The analysis achieved a precision rate of 
83% and Recall 100%.

﻿23 The analysis achieved a precision rate of 
100% and Recall 100%.

﻿24 For all topic analyses, we took a sample of 
10 sermons and achieved an accuracy rate of 
100%, meaning that every sermon identified 
as containing a certain topic was correctly 
classified.

﻿25 For the task of topic classification we got 
accuracy of 100%.

﻿26 The analysis based on a sample of 20 
sermons achieved a precision rate of 85% 
and Recall of 100%.
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